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Abstract

Simplified approximate models for radiation are proposed to study thermal effects in low Mach flow in open tunnels.
The governing equations for fluid dynamics are derived by applying a low Mach asymptotic in the compressible Navier–
Stokes problem. Based on an asymptotic analysis we show that the integro-differential equation for radiative transfer can
be replaced by a set of differential equations which are independent of angle variable and easy to solve using standard
numerical discretizations. As an application we consider a simplified fire model in vehicular tunnels. The results presented
in this paper show that the proposed models are able to predict temperature in the tunnels accurately with low computa-
tional cost.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Thermal radiation in gas flows has direct effects on many industrial applications such as fires, furnaces
and gas turbines. Growing concern with high temperature processes has emphasized the need for an eval-
uation of the effect of radiative heat transfer. Nevertheless, it is common for work on convective flows to
neglect thermal radiation mainly because it involves tedious mathematics, which increase the computa-
tional work, and also because of the lack of detailed information on optical properties of the participating
media and surfaces. However, radiation can strongly interact with convection in many situations of engi-
neering interest and neglecting its effects may have significant consequences in the overall predictions. For
discussion on the effect radiative properties of participating gases we refer to [11,12,19] and further refer-
ences can be found therein.
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The main difficulties raised when approximating thermal radiation in convection flows lie essentially on
the large set of dependent unknowns and the coupling between the radiative transfer and the energy equa-
tion. The most accurate procedures available in the literature for computing radiation transfer in furnaces
are the zonal and Monte Carlo methods [15]. However, these methods are not widely applied in compre-
hensive combustion calculations due to their large computational time and storage requirements. Also, the
equations of radiation transfer are in non-differential form, a significant inconvenience when solved in con-
junction with the differential equations of flow and convection. On the other hand, much of the current
work on modeling energy transport in high-temperature gas or chemically reacting flows uses computa-
tional fluid dynamics (CFD) codes. Therefore, the models for solving the radiative transfer equations must
be compatible with the numerical methods employed to solve the flow equations. The zonal and Monte
Carlo methods for solving the radiative transfer problem are incompatible with the mathematical formu-
lations used in CFD codes and require prohibitive computational times for spatial resolution desired. The
discrete ordinates methods [2,17] appear to be reasonable compromises for solving the radiative transfer
equations, but still one has to deal with large systems of algebraic equations resulting from discretizing
angle and space coordinates, that may deteriorate the efficiency of the CFD solver. For these reasons,
numerous investigations are currently being carried out worldwide to assess computationally efficient
methods. The present work deals with the design of such methods.

In this paper, we consider the simplified PN (SPN) approximations to the radiation problem. The SPN

approximations were first proposed in [4] and theoretically studied in [10]. In [9,20], the SPN approximations
have been extensively studied for radiative transfer in glass manufacturing, while in [3] they have been imple-
mented for radiation in gas turbines. The SPN approximations have also been studied in [1] for internal radi-
ation in crystal growth. The main advantage in considering SPN approximations is the fact that the radiative
transfer equations are transformed to a set of parabolic/elliptic equations, independent of the angular direc-
tions and easy to solve numerically using standard methods. Furthermore, comparisons presented in the above
mentioned references have shown that the SPN models approach the full radiative heat transfer with very low
computational cost.

The motivation for this work is the need to obtain efficient numerical solutions to thermal radiation in
gas flows at low Mach number. A typical example of such application is the modeling of fires in vehicle
tunnels. As stated in [6,5], the characteristic velocity in the tunnel is of order 1 m/s, for which low Mach
number flow can be a suitable model. In fact, low Mach number approximation systematically removes
acoustic waves without eliminating density variation. Here, the governing equations for unsteady com-
pressible flow are the Navier–Stokes equations. For low Mach number flow, it is well known that numer-
ical solution of these equations is computationally demanding because of the severe restriction imposed on
the time step by acoustic wave propagation which is much faster than flow speeds. Following the work in
[13], acoustic waves are removed by expanding independent variables in powers of the Mach number while
density variations are still allowed. When the essential dynamics in flows such as low-speed combustion is
dependent on density differences but not compressibility (e.g. fire events in a tunnel) this procedure
improves computational efficiency.

Compressibility effects can be neglected in low Mach number flows but density variations must still be
accounted for when phenomena such as combustion are present. Then the time scale of acoustic waves is small
compared to that of the hydrodynamic phenomena. An algorithm designed for general compressible flow will
be computationally expensive because time steps must be small enough to resolve the acoustic waves while the
integration period must remain large enough to capture the hydrodynamic phenomena. The radiation time-
scale must be dealt with separately. Our goal in the present work is to develop robust and efficient solvers
for the radiation convection problems. This is reached by coupling the low Mach number flows for fluid
dynamics and the SPN models for the radiation. The coupled problem can be solved by a slight modification
of the Marker and Cell (MAC) scheme [7,24] for the incompressible flows.

The layout of this paper is as follows. In Section 2, we formulate the mathematical models for thermal flow
and radiative transfer. This section includes the low Mach asymptotic for the fluid dynamics and the SPN

approximations for the radiation transfer. Numerical solutions of the proposed models are presented in
Section 3. Section 4 is devoted to numerical results for two examples on fires in vehicular tunnels. Some
concluding remarks are given in Section 5.
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2. Mathematical equations

Modeling radiation hydrodynamics requires two sets of mathematical equations. The first set of equations
models the fluid dynamics while the second set determines the radiative signal. The two processes have differ-
ent physical characteristics and need careful numerical treatment, we refer to [14] for more details on radiation
hydrodynamics. In this paper, a fluid dynamic model is derived using a low Mach asymptotic in the compress-
ible Navier–Stokes equations whereas, the radiation model is formulated using an asymptotic expansion over
an optical scale.

The compressible equations for conservation of mass, momentum and energy are
@~t~qþ ~r � ð~q~uÞ ¼ 0;

~u~t þ ð~u � ~rÞ~uþ 1

~q
~r~p ¼ l

~q
~D~uþ 1

3
~rð ~r � ~uÞ

� �
þ ~f;

@~tðcv~qeT Þ þ ~r � ðcv~u~qeT Þ þ ~p ~r~u� ~r � ðk ~reT Þ ¼ � Z 1

m0

Z
x¼4p

~jð~BðeT ; mÞ � ~IÞ dx dmþ ~q;

ð2:1Þ
where ~qðt; xÞ, ~uðt; xÞ, ~pðt; xÞ, eT ðt; xÞ and ~Iðt; m;x; xÞ denote, respectively, the mass density, the flow velocity, the
thermal pressure, the temperature of the fluid and the radiative intensity. Here, x is the space coordinate, t is
the time variable, x is the directional angle and m is the frequency variable. The terms ~f and ~q describe the
external forces (e.g., gravitational force) and source contributions (e.g., heat or sink source), respectively.
The quantities l, k, cv are the dynamic viscosity, the heat conductivity and the specific heat coefficient at con-
stant volume, respectively. The frequency m0 is the upper bound of opaque band of the optical spectrum where
radiation is completely absorbed. By assuming that the fluid is a perfect gas, the fluid dynamic model is closed
by the equation of state
~p ¼ R~qeT ; ð2:2Þ

where R = cp � cv, with cp is the specific heat coefficient at constant pressure. The spectral intensity I(t, m, x, x)
at time t, in position x, within frequency m and propagating along direction x with a speed c, is obtained from
the isotropic radiative transfer equation
8m > m0 :
1

c
@~t

~I þ x � r~I þ ð~rþ ~jÞ~I ¼ ~r
4p

Z
x¼4p

~Iðt; m;x;xÞ dxþ ~j~BðeT ; mÞ; ð2:3Þ
where ~jðmÞ is the absorption coefficient, ~rðmÞ is the scattering coefficient and BðeT ; mÞ is the spectral intensity of
the black-body radiation given by the Planck function
eBðeT ; mÞ ¼ 2hm3

c2
0

ðehm=keT � 1Þ�1
; ð2:4Þ
with h, k and c0 are Planck�s constant, Boltzmann�s constant and the speed of radiation propagation in vac-
uum, respectively, compare [14] for further physical details. For mathematical aspects of the radiative transfer
equation and related issues see for instance [15]. Notice that in the above coupling we have assumed a ther-
modynamic equilibrium such that the fluid temperature and the radiation temperature are equal.

In order to rewrite the above equations in a dimensionless form, we define the following non-dimensional
variables:
x ¼ ~x

x1
; t ¼

~t
t1
; r ¼ ~r

r1 þ j1
; j ¼ ~j

r1 þ j1
; k ¼

~k
k1

; q ¼ ~q
q1

; u ¼ ~u

u1
;

T ¼
eT

T1
; p ¼ ~p

p1
; I ¼

~I
I1
; ð2:5Þ
where the subscript ‘‘1’’ represents reference quantities. We also impose the relations
t1 ¼
x1
u1

; p1 ¼ Rq1T1; I1 ¼ cvq1T1u1; BðT ; mÞ ¼
~BðeT ; mÞ

I1
. ð2:6Þ
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Using the new variables (2.5), Eq. (2.1) can be rewritten in dimensionless as
@tqþr � ðquÞ ¼ 0;

@tuþ u � ruþ 1

cM2

1

q
rp � 1

Re
1

q
Duþ 1

3
rðr � uÞ

� �
¼ f;

@ tðqT Þ þ r � ðuqT Þ þ ðc� 1Þpr � u� c
Pr

1

Re
DT ¼ � 1

s

Z 1

m0

jð4pBðT ; mÞ � uÞ dmþ q;

ð2:7Þ
where the adiabatic exponent c, the Mach number M, the Reynolds number Re, the Prandtl number Pr and
the Froude number Fr are given by
c ¼ cp

cv
; M2 ¼ q1u2

1
cp1

; Re ¼ q1u1x1
l

; Pr ¼ lcp

k
; Fr ¼ u1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x1kfk
p ; ð2:8Þ
with
f ¼
~f

Fr2k~fk
; q ¼ q1x1

u1p1
ðc� 1Þ~q.
For the situation of fires in vehicular tunnels, typical values for the reference parameters and the dimensionless
numbers (2.8) can be found in [6]. In Eq. (2.7), u is the total incident radiation defined as
uðt; m; xÞ ¼
Z

x¼4p
Iðt; m;x; xÞ dx. ð2:9Þ
Analogously, the radiative transfer equation (2.3) can be rewritten in dimensionless as
8m > m0 :
1

c
@tI þ sx � rI þ ðrþ jÞI ¼ r

4p
uþ jBðT ; mÞ; ð2:10Þ
where the optical scale s is defined by
s ¼ 1

ðr1 þ j1Þx1
. ð2:11Þ
Note that the scaling parameter s depends on optical characteristics of the fluid and reference height of the
fluid domain. It can be viewed as a dimensionless number to differentiate between an optically thick medium
(s� 1) and an optically thin medium (s � 1).

Eqs. (2.7) and (2.10) have to be solved in a bounded domain X with smooth boundary oX and subject to
given initial and boundary conditions. These conditions strongly depend on the problem under consideration.
Since the emphasis in the present work is to simulate a simplified model for fires in vehicular tunnels, we shall
focus in a generic two-dimensional tunnel shown in Fig. 1, and boundary conditions are set according to its
geometry. Thus
oX ¼ C1 [ C2 [ C3 [ C4; ð2:12Þ

where C1 and C2 represent the entrance and exit of the tunnel, while a defines the tunnel slope.
α
Γ4

x

y

Γ2

Γ1

Γ3
g

Fig. 1. A generic two-dimensional domain for vehicular tunnels.
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2.1. Low Mach asymptotics

There are two approaches for solving low Mach number flows. The first approach begins with the equations
for compressible flow, devise a numerical method and then consider modifications to the numerical algorithm
when low Mach number flows are encountered. In practice, this procedure is performed using some type of
preconditioning techniques in the sense that they scale the eigenvalues of the system to similar orders of mag-
nitude and remove the disparity in wave speeds, leading to a well-conditioned system, compare for instance
[22]. The second approach is to begin with the equations for low Mach number flows and adapt numerical
schemes devised for incompressible flows to allow density variations. This last approach has been taken here.

The approach consists in a Taylor series expansion of variables (in our case the pressure) in power terms of
the Mach number. The basic idea behind this technique is to decrease the numerical representation of the
speed of sound artificially, by subtracting a constant pressure p(0) across the entire domain
p ¼ pð0Þ þ �pð1Þ þ Oð�2Þ; ð2:13Þ

where � = cM2, p(0) is the ground pressure and p(1) is the fluctuation pressure part. The leading order momen-
tum equation reduces to $p(0) = 0; therefore, p(0) can only be a function of time, i.e. p(0) = p(0)(t). In closed sys-
tems, the ground pressure may change with time whereas it remains constant in open systems like vehicular
tunnels considered in this paper. Then, considering p(0) = constant and that in leading order we have
T = p(0)/q, the system (2.7) can be rewritten as
@tqþr � ðquÞ ¼ 0;

@tuþ ðu � rÞuþ
1

q
rp ¼ 1

Re
1

q
Duþ 1

3
rðr � uÞ

� �
þ f;

r � u ¼ Q;

ð2:14Þ
where the right-hand side term Q is given by
QðT ;uÞ ¼ 1

pð0Þ Pr Re
DT � 1

cpð0Þ
1

s

Z 1

m0

jð4pBðT ; mÞ � uÞ dmþ q
cpð0Þ

; T ¼ pð0Þ

q
.

Note that all quantities that appear in these equations, are the leading order terms (�0) of their corresponding
expansion, except for the hydrodynamic pressure p = p(1), which appears in the momentum equation and is a
first-order (�1) quantity. The nonlinear system (2.14) is transformed using a modified projection method
described in [5] into
@tqþr � ðquÞ ¼ 0;

@tuþ ðu � rÞuþ
1

q
rp ¼ 1

Re
1

q
Duþ 1

3
rQ

� �
þ f;

r � 1

q
rp

� �
¼ r � 1

Re
1

q
Duþ 1

3
rQ

� �
þ f

� �
.

ð2:15Þ
For the above system we impose the following boundary conditions:
nðx̂Þ � ruðt; x̂Þ ¼ 0 8x̂ 2 C1 [ C3;

uðt; x̂Þ ¼ 0 8x̂ 2 C2 [ C4;

qðt; x̂Þ ¼ q0 8x̂ 2 C�1 ;

qðt; x̂Þ ¼ q1 8x̂ 2 C�3 ;

pðt; x̂Þ ¼ p0 8x̂ 2 C1;

pðt; x̂Þ ¼ p1 8x̂ 2 C3;

nðx̂Þ � rpðt; x̂Þ ¼ 1

Re
1

q
Duþ 1

3
rQ

� �
� nðx̂Þ þ f � nðx̂Þ 8x̂ 2 C2 [ C4;

ð2:16Þ
where nðx̂Þ denotes the outward normal in x̂ with respect to oX and
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C�1 ¼ x̂ 2 C1 : nðx̂Þ � uðt; x̂Þ 6 0f g; C�3 ¼ x̂ 2 C3 : nðx̂Þ � uðt; x̂Þ 6 0f g.

As pointed out in [5], using Dirichlet boundary conditions for pressure at the ends of the domain we can
directly simulate atmospheric effects or the pressure induced by ventilators. It is known that a ventilator
produces an over pressure which induces a certain velocity to the fluid.

2.2. Simplified PN approximations

The SPN approximations for radiative heat transfer problems have been analyzed in [9]. The SPN approx-
imations have also been studied in [8,20] for glass manufacturing and in [3] for gas turbines. Here, we extend
these approximations to the radiation hydrodynamics. Since the photons travel with very high speed, the term
1/c in (2.10) is negligible and is dropped in the remainder of paper.

First we rewrite Eq. (2.10) as
1þ s
rþ j

x � r
� �

I ¼ S;
where the right-hand term is given by
S ¼ 1

rþ j
r

4p
uþ jBðT ; mÞ

� �
.

Then, we apply a Neumann series to formally invert the transport operator
I ¼ 1þ s
rþ j

x � r
� ��1

S � 1� s
rþ j

x � r þ s2

ðrþ jÞ2
x � rð Þ2 � s3

ðrþ jÞ3
x � rð Þ3 þ � � �

 !
S.
Note that the source term S does not depend on the angle coordinates. Integrating with respect to x over all
directions in the unit sphere and using
Z

x¼4p
ðx � rÞn dx ¼ ð1þ ð�1ÞnÞ 2p

nþ 1
rn;
with $2 = $ Æ $ = D, we obtain the formal asymptotic equation for u
4pS ¼ 1� s2

3ðrþ jÞ2
r2 � 4s4

45ðrþ jÞ4
r4 � 44s6

945ðrþ jÞ6
r6

 !
uþ Oðs8Þ.
When terms of Oðs2Þ, Oðs4Þ, Oðs6Þ or Oðs8Þ are neglected we obtain the SP0, SP1, SP2 or SP3 approximations,
respectively. Higher-order approximations can be derived in a similar manner.

The SP0 approximation:
u ¼ 4pS;
which is equivalent to
8m > m0 : u ¼ 4pBðT ; mÞ. ð2:17Þ

Note that the equilibrium (2.17) cancels the radiation effects in the fluid dynamics model (2.7). In this paper,
we consider only the SP1 and SP3 approximations and our techniques can be straightforwardly extended to
other approximations. Thus,

The SP1 approximation:
4pS ¼ u� s2

3ðrþ jÞ2
r2uþ Oðs4Þ;
and the associated equations are given by
8m > m0 : � s2

3ðrþ jÞDuþ ju ¼ 4pjBðT ; mÞ. ð2:18Þ
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The SP3 approximation:
4pS ¼ 1� s2

3ðrþ jÞ2
r2 � 4s4

45ðrþ jÞ4
r4 � 44s6

945ðrþ jÞ6
r6

 !
uþ Oðs8Þ;
and the associated equations are given by
8m > m0 : � s2

rþ j
l2

1Dw1 þ jw1 ¼ 4pjBðT ; mÞ;� s2

rþ j
l2

2Dw2 þ jw2 ¼ 4pjBðT ; mÞ. ð2:19Þ
The new variables w1 and w2 in (2.19) are related to the total incident intensity (2.9) by the relation
u ¼ c2w1 � c1w2

c2 � c1

. ð2:20Þ
The boundary conditions for SPN approximations are derived from variational principles and are strongly
connected to the PN approximations Marshak�s conditions, compare [15]. Here, we formulate boundary
conditions for the SPN approximations which are consistent with fluid boundary conditions (2.16). For more
general formulation of these boundary conditions we refer the reader to [9]. Hence, the boundary conditions
for SP1 equation (2.18) are
nðx̂Þ � ruðt; x̂Þ ¼ 0 8x̂ 2 C2 [ C4;
s

3ðrþ jÞ nðx̂Þ � ruðt; x̂Þ þ uðt; x̂Þ ¼ 4pBðT ðt; x̂Þ; mÞ 8x̂ 2 C�1 [ C�3 .
ð2:21Þ
For SP3 equation (2.19), the boundary conditions are given by
nðx̂Þ � rw1ðt; x̂Þ ¼ 0; nðx̂Þ � rw2ðt; x̂Þ ¼ 0 8x̂ 2 C2 [ C4;
s

rþ j
nðx̂Þ � rw1ðt; x̂Þ þ a1w1ðt; x̂Þ ¼ g1B T ðt; x̂Þ; mð Þ þ b2w2ðt; x̂Þ 8x̂ 2 C�1 [ C�3 ;

s
rþ j

nðx̂Þ � rw2ðt; x̂Þ þ a2w2ðt; x̂Þ ¼ g2B T ðt; x̂Þ; mð Þ þ b1w1ðt; x̂Þ 8x̂ 2 C�1 [ C�3 .

ð2:22Þ
According to (2.16), the boundary temperature T ðt; x̂Þ in (2.21) and (2.22) is defined as
T ðt; x̂Þ ¼
p0

q0
if x̂ 2 C�1 ;

p0

q1
if x̂ 2 C�3 .

(

The remaining parameters appeared in (2.19), (2.20) and (2.22) are listed as follows:
l2
1 ¼ 0:11558711; l2

2 ¼ 0:74155574; c1 ¼ �1:6330966; c2 ¼ 3:0616681; a1 ¼ 2:06453963;

a2 ¼ 1:28268259; b1 ¼ �0:28678023; b2 ¼ 0:300669118; g1 ¼ 29:7220898; g2 ¼ 12:5148781.
It is noteworthy that these parameters are valid only when non-reflective boundary conditions are supplied to
the radiative transfer equation (2.3). In [9], mathematical formulae to handle more general boundary condi-
tions in (2.3) are given.
3. Solution procedure

The fluid dynamics and radiation equations presented in the previous section can be solved using existing
codes from computational fluid dynamics. In the current work, the fluid flow equations (2.15), (2.16) are
solved by a modified projection method based on the MAC scheme. This method is similar to that used in
[5] as an extension of the MAC scheme [24] for incompressible flows. The essential differences are in use of
extra source term and the inclusion of radiation effects. The SPN equations (2.18) and (2.21), or (2.19) and
(2.22) are solved using a central difference scheme using the same mesh hierarchy as the one used in fluid
dynamics solution.
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Let us consider the two-dimensional case, i.e., x = (x, y), u = (u, v) and f = (f1, f2). The time interval is
divided into subintervals [tn, tn+1] with tn = nDt and let wn denotes the value of an arbitrary function w at time
tn. Given {pn, qn, un, vn, Tn, un}, we compute the solution {pn+1, qn+1, un+1, vn+1, Tn+1, un+1} as follows:

Step 1. Solve for un+1
8m > m0 : � s2

3ðrþ jÞDunþ1 þ junþ1 ¼ 4pjBðT n; mÞ; ð3:1Þ
in case of SP1 approximation or
8m > m0 : � s2

rþ j
l2

1Dwnþ1
1 þ jwnþ1

1 ¼ 4pjBðT n; mÞ;� s2

rþ j
l2

2Dwnþ1
2 þ jwnþ1

2 ¼ 4pjBðT n; mÞ; ð3:2Þ

unþ1 ¼ c2w
nþ1
1 � c1w

nþ1
2

c2 � c1

; ð3:3Þ
in case of SP3 approximation.
Step 2. Formulate the intermediate source term Qn+1/2
Qnþ1=2 ¼ 1

p0 Pr Re
DT n � 1

cp0

1

s

Z 1

m0

jð4pBðT n; mÞ � unþ1Þ dmþ q
cp0

. ð3:4Þ
Step 3. Update the density qn+1
qnþ1 � qn

Dt
þ un oqn

ox
þ vn oqn

oy
þ qnQnþ1=2 ¼ 0. ð3:5Þ
Step 4. Update the temperature Tn+1
T nþ1 ¼ p0

qnþ1
. ð3:6Þ
Step 5. Formulate the source term Qn+1
Qnþ1 ¼ 1

p0 Pr Re
DT nþ1 � 1

cp0

1

s

Z 1

m0

jð4pBðT nþ1; mÞ � unþ1Þ dmþ q
cp0

. ð3:7Þ
Step 6. Calculate an auxiliary velocity (uaux, vaux)
uaux � un

Dt
þ oðunÞ2

ox
þ ounvn

oy
� unQnþ1 � 1

Re
1

qnþ1
Dun þ 1

3

oQnþ1

ox

� �
¼ f n

1 ;

vaux � vn

Dt
þ ounvn

ox
þ oðvnÞ2

oy
� vnQnþ1 � 1

Re
1

qnþ1
Dvn þ 1

3

oQnþ1

oy

� �
¼ f n

2 .

ð3:8Þ
Step 7. Solve for the pressure pn+1
� o

ox
Dt

qnþ1

opnþ1

ox

� �
� o

oy
Dt

qnþ1

opnþ1

oy

� �
¼ Qnþ1 � ouaux

ox
� ovaux

oy
. ð3:9Þ
Step 8. Update the velocity (un+1, vn+1)
unþ1 ¼ uaux � Dt
qnþ1

opnþ1

ox
;

vnþ1 ¼ vaux � Dt
qnþ1

opnþ1

oy
.

ð3:10Þ
Note that the Poisson problem (3.9) is obtained by taking the divergence of Eq. (3.8) and using the fact that
$ Æ u = Q. In the solution procedure, two linear systems have to be solved at each time step to update the total
incident radiation un+1 from (3.1) or (3.2) and the pressure pn+1 from (3.9). To solve these linear systems in our
algorithm we have implemented a preconditioned conjugate gradient from [23]. The discretization of spatial
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derivatives appeared in above steps, is carried out using a staggered grid in which the different variables are
approximated at different gridpoints as shown in Fig. 2. This type of meshes, widely used in computational
fluid dynamics, guarantees that the computed flow solution is not perturbed by spurious pressure modes.

In order to formulate the fully discrete equations for the radiation hydrodynamic equations, we assume a
uniform spatial mesh with grid sizes Dx and Dy in x- and y-direction, respectively. We also denote by wij the
value of a function w at gridpoints (xi, yj). Therefore, the Laplace operator in (3.1), (3.2), (3.4), (3.7) and (3.8)
is discretized by the central differencing
Dwjij �
wi�1j � 2wij þ wiþ1j

ðDxÞ2
þ wij�1 � 2wij þ wijþ1

ðDyÞ2
.

The spatial derivatives of density in (3.5) are descretized by upwind differencing
u
oq
ox
jij � uþij

qij � qi�1j

Dx
þ u�ij

qiþ1j � qij

Dx
;

v
oq
oy
jij � vþij

qij � qij�1

Dy
þ v�ij

qijþ1 � qij

Dy
;

where
u�ij ¼
1

2
ðuij � juijjÞ and v�ij ¼

1

2
vij � jvijj
� �

.

Due to the fact that at high Reynolds numbers the convective part in (3.8) becomes dominant, the spatial
derivatives ou2

ox , ouv
oy , ouv

ox and ov2

oy in (3.8) have to be treated by a mixture of central and donor-cell differencing
as in [21]. For instance, the derivative ou2

ox is approximated as
ou2

ox

				
ij

� 1

Dx
uij þ uiþ1j

2

� �2

� ui�1j þ uij

2

� �2
� �

þ d
Dx

juij þ uiþ1jjðuij � uiþ1jÞ
4

� jui�1j þ uijjðui�1j � uijÞ
4

� �
;

where d 2 [0, 1] is a chosen parameter, d = 0 corresponds to central differences and d = 1 yields the donor-cell
differencing. The other spatial derivatives in the convective part of (3.8) can be handled similarly.

The full discrete formulation of the Poisson problem (3.9) is given by
pnþ1
i�1j � 2pnþ1

ij þ pnþ1
iþ1j

ðDxÞ2
þ

pnþ1
ij�1 � 2pnþ1

ij þ pnþ1
ijþ1

ðDyÞ2
� 1

qnþ1
ij

qnþ1
iþ1j � qnþ1

i�1j

2Dx

pnþ1
iþ1j � pnþ1

i�1j

2Dx

� 1

qnþ1
ij

qnþ1
ijþ1 � qnþ1

ij�1

2Dy

pnþ1
ijþ1 � pnþ1

ij�1

2Dy
¼

qnþ1
ij

Dt

uaux
ij � uaux

i�1j

Dx
þ

vaux
ij � vaux

ij�1

Dy
� Qnþ1

ij

� �
. ð3:11Þ
At the boundary we use ‘‘ghost points’’ such that the boundary conditions enter the discrete equations via
source terms and they are incorporated in the linear systems to be solved, compare [5] for more details. It
is worth mentioning that the space and time discretizations presented in this paper are only first-order accu-
rate. In addition, to ensure stability of the solution procedure the time stepsize Dt has to satisfy the canonical
hyperbolic and parabolic CFL conditions
Location of v 

Location of u 

Location of p, ρ, T, ϕ

Fig. 2. Staggered mesh used in the space discretization.
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umaxDt 6 Dx; vmaxDt 6 Dy;
1

ðDxÞ2
þ 1

ðDyÞ2

 !
Dt
Re
6

1

2
; ð3:12Þ
where umax = maxij|uij| and vmax = maxij|vij|.

4. Results and numerical examples

In this section, we examine the performance of the models presented in this paper for two simplified exam-
ples on fires in vehicular tunnels. As in [5], we consider two fire events in a vehicle tunnel with length 1 km and
10 m height as well as a pressure difference (between top and bottom) of 120 Pa. The reference quantities and
typical values suggested in [6] for fires in vehicle tunnels are listed in Table 1. A heat source with area size of
10 m · 4 m and strength of 10 MW is located in the middle of the tunnel. Here, the heat source is implemented
as an indicator function and not as an obstacle. The radiation source in the temperature equation is acting on
the whole domain. Initially, we set the following conditions:
uðt ¼ 0; x; yÞ ¼ vðt ¼ 0; x; yÞ ¼ 0; qðt ¼ 0; x; yÞ ¼ 1:2; pðx; yÞ ¼ qgy;
which correspond to a fluid at rest with hydrostatic pressure. All linear systems are solved using the precon-
ditioned BiCGStab algorithm with a tolerance of 10�7 to stop the iterations. The total duration of simulation
is 20 min. In all our simulations we use variable time stepsizes Dt adjusted at each step according to (3.12) as
Dt ¼ C min
Dx

umax

;
Dy

vmax

;
Re
2

1

ðDxÞ2
þ 1

ðDyÞ2

 !�1
0@ 1A;
where C is a safety factor set to 1/2 for all test cases to ensure the stability of the numerical scheme. We assume
non-scattering and gray participating media in the tunnel. Thus, the black-body radiation is given by
BðT Þ ¼ aRT 4;
where aR = 5.67 · 10�8 W/m2 K4 is the Boltzmann constant. The optical scale is defined using the reference
values given in Table 1 and is set s = 0.1. We should mention that non-gray computations can also be carried
out using our simplified models provided detailed information on the spectral properties of the medium is
given. In the sequel we shall use the terminology SP0, SP1, and SP3 to refer to Eqs. (2.15), (2.15)–(2.18)
and (2.15)–(2.19), respectively. Two situations are selected namely fire accidents in a tunnel without slope
and in a tunnel with slope of 3%.
4.1. Accuracy example

The accuracy of the SPN models has been studied in [8,9,18] among others. In these references, the SPN

results have been compared to the solution of full radiative transfer in both two and three space dimensions.
Hence, our concern in this section is on the low Mach asymptotic and we refer to [8,9,18] for discussions on
the verification of SPN approximations.

In this test example, we use the method of manufactured solutions to quantify the proposed models in term
of some measured errors. Here, we solve the SPN equations in the unit square [0, 1] · [0, 1] subject to periodic
boundary conditions. The manufactured solution is taken to be
qðt; x; yÞ ¼ 1;

pð2Þðt; x; yÞ ¼ � cosð4pðx� tÞÞ � cosð4pðy � tÞÞ;
uðt; x; yÞ ¼ 1� 2 cosð2pðx� tÞÞ sinð2pðy � tÞÞ;
vðt; x; yÞ ¼ 1þ 2 sinð2pðx� tÞÞ cosð2pðy � tÞÞ;
uðt; x; yÞ ¼ BðT ðt; x; yÞÞ.

ð4:1Þ
The external force f and the source term q are calculated such that (4.1) is the exact solution of Eq. (2.15). A
similar test example was proposed by the authors in [16] to test the accuracy of their solver for low Mach num-
ber flows. We compute the L1-error and the L2-error as follows:



Table 1
Quantities, units, reference quantities and typical values used in computations

Quantity Unit Reference quantity Typical reference value

t s t1 = u1/h 15 min
x, y m L 103�104 m
Height m x1 = h 10 m
u m/s u1 1 m/s
q kg/m3 q1 1.2 kg/m3

p kg/ms2 p1 105 Pa = 105 kg/ms2

f m/s2 f1 10 m/s2

T K T1 300 K
r 1/m r1 1/m
j 1/m j1 100/m
I kg/s3 sr I1 1 kg/s3 sr
q W/m3 q1 105�106 W/m3

R m2/K s2 287 m2/K s2

cp m2/K s2 1005 m2/K s2

k kg m/K s2 25 · 10�3 kg m/K s2

l kg/ms 18 · 10�6 kg/ms

Table
Errors

Gridpo

40 · 40
80 · 80
160 · 1
320 · 3
640 · 6

Table
Result

Gridpo

100 · 1
200 · 2
400 · 4
800 · 8
1600 ·
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kekL1 ¼ max
i;j
jeijj and kekL2 ¼

X
i;j

jeijj2DxDy

 !1=2

;

respectively, where
eij ¼ qðtn; xi; yjÞ � qn
ij

			 			þ uðtn; xi; yjÞ � un
ij

			 			þ vðtn; xi; yjÞ � vn
ij

			 			;

with q(tn, xi, yj), u(tn, xi, yj) and v(tn, xi, yj) are the exact q, u, and v at time tn and gridpoint (xi, yj) while, qn

ij, un
ij

and vn
ij are the computed solutions. In Table 2, we summarize the errors obtained by the SP0 model at time

tn = 0.5 for different grid levels. Note that, in this test example, we have assumed a radiation equilibrium
in (4.1). For this case, the errors for the SP1 and SP3 models are practically the same as those for the SP0 model
and are omitted.

The results demonstrate the numerical convergence in the proposed models. As expected, the method used
in our computations shows first-order accuracy.
2
and convergence rates for the accuracy example

ints L1-error Rate L2-error Rate

0.7508 – 0.3667 –
0.4229 0.8281 0.1878 0.9654

60 0.2242 0.9155 0.0946 0.9893
20 0.1153 0.9594 0.0464 1.0277
40 0.0576 1.0012 0.0229 1.0188

3
s for grid convergence

ints SP0 SP1 SP3

MDV Rate MDV Rate MDV Rate

0 0.5810 – 0.5980 – 0.6130 –
0 0.5894 0.98 0.6626 0.90 0.6496 0.94
0 0.4152 1.41 0.4133 1.60 0.4132 1.57
0 0.4020 1.03 0.4017 1.02 0.3992 1.03
160 0.4019 1.00 0.4017 1.00 0.3991 1.00



Fig. 3. Isotherms for SP0 (left column), SP1 (middle column) and SP3 approximations (right column) for the tunnel without slope.
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Our next concern is to examine the grid convergence in the proposed models. To this end, we run our mod-
els for a fire event in vehicular tunnel without slope using a nested mesh hierarchy. As convergence indicator,
we compute the mean density variation MDV defined as
Fig. 4.
5, 20 m
MDV ¼ 1

�q

X
i;j

ðqij � �qÞ2DxDy

 !1
2

with �q ¼
X

i;j

qijDxDy.
Table 3 shows the evolution of the MDV during the mesh refinement process in the SPN models. In
this table, we also include the efficiency rate (Rate) defined as the ratio of the estimated MDV on a mesh
level to the next mesh level. The results are displayed at time t = 2 min. At this time, the flow has already
reached the exit and entrance of the tunnel. It is easy to verify that for the last two mesh levels the
differences in MDV and efficiency rates are always very small. These results ensure grid independence
of the numerical results.
Temperature distribution and velocity vectors obtained by SP3 approximation for the tunnel without slope at times t = 0.5, 1, 2, 3,
in.
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In all our next computations, the spatial domain is discretized into 2500 · 50 gridpoints. This mesh contains
roughly a double number of total gridpoints as in the 1600 · 160 mesh and almost a half number of total grid-
points as in the 800 · 80 mesh. However, the results obtained for the 2500 · 50 mesh look similar to those
obtained for the 1600 · 160 mesh. The reasons for choosing the 2500 · 50 mesh in our next computations than
the 1600 · 160 mesh lie essentially on the computational cost required for each mesh configuration and also on
the grid ratio Dx/Dy in each mesh resolution. This grid ratio is 10 for the 1600 · 160 mesh while, for the
2500 · 50 mesh the ratio is reduced five times.

4.2. Vehicular tunnel without slope

Our first test example is a fire event in vehicular tunnel without slope. The isotherm plots obtained by the
SP0, SP1 and SP3 models are shown in Fig. 3 at different times. In each case, the fluid rises from the hot source
and propagates along the cold regions in the tunnel as can be clearly seen in Fig. 4, where temperature distri-
bution is plotted together with velocity vectors obtained by the SP3 approximation. The results obtained by
SP0 and SP1 approximations are not included in this figure for sake of brevity. The absence of pressure dif-
ferences between the entrance and exit of the tunnel permits to the temperature fronts to move symmetrically
with respect to the middle of the tunnel where the source is located. Some deviations on the temperature plots
between the left and right regions are observed in the horizontal cross-sections in Fig. 6, which may be caused
by the coarse mesh used in the simulations.

In order to have a clear comparison between the non-radiating convection (SP0 model) and the
radiating convection (SP1 and SP3 models), we display in Fig. 5 vertical cross-sections of the computed
temperatures at two points in the tunnel. The first point is located exactly at the source position, while
the second point is positioned at 100 m right from the source. The horizontal cross-sections of the com-
puted temperature in the middle of tunnel height are presented in Fig. 6 at four different instants. As can
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Fig. 5. Vertical cross-sections of the temperature at x = 500 m (top row) and at x = 600 m (bottom row) in the tunnel without slope.
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Fig. 6. Horizontal cross-sections of the temperature at y = 5 m for different times.
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be seen from these figures, the maximum temperature occurs in the source region, which explains why the
fluid rises in the central region of the tunnel and moves symmetrically downstream and upstream. For
instance, in the point located at (600, 5 m), the maximum value of the temperature predicted by SP3
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Fig. 7. Time evolution of the temperature for points located at (500, 5 m) (left column) and at (600, 5 m) (right column) in the tunnel
without slope.



Fig. 8. Isotherms for SP0 (left column), SP1 (middle column) and SP3 approximations (right column) for the tunnel with 3% slope.
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approximation is 3.4% higher than SP0 results at time t = 4 min, while at time t = 16 min, the SP3 tem-
perature is 5.2% higher than SP0 temperature.

The time evolutions of the temperature for two points located at (500, 5 m) and (600, 5 m) are
presented in Fig. 7. The difference in accuracy between SP1 and SP3 results were not significant, which
confirms the asymptotic expansion discussed in Section 2.2. Here, the fluid radiation increases with fluid
temperature and when the fluid temperature is less than 700 K, combined radiation and convection is close
to pure convection. When radiation is included, temperature decreases near the fire event and increases in
regions far from the source. This can be explained as follows. A radiative energy is proportional to the
fourth power of absolute temperature, with the increase of temperature difference the radiative heat trans-
fer between the hot source and the closer regions becomes stronger than that between the other cold
regions in the tunnel. On the other hand, the temperature gradients are weakened near the hot source
but strengthened near the far cold regions.
Fig. 9. Temperature distribution and velocity vectors obtained by SP3 approximation for the tunnel with a slope at times t = 0.5, 1, 2, 3, 5,
20 min.
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4.3. Vehicular tunnel with 3% slope

The second test example consists of a fire event in vehicular tunnel with a slope of 3%. We use the
same setting as the previous example. This test case occurs in many realistic fire events and differs from
the previous example in that, in the current example, pressure differences are present in the tunnel and
buoyancy effects act as additional forces. In Fig. 8, we present the isotherms plots obtained by the
SP0, SP1 and SP3 models at different times. Temperature distributions and velocity vectors obtained by
the SP3 model are shown in Fig. 9. It is clear that the slope strongly alters the distribution of fluid tem-
perature in the tunnel and also breaks the symmetry detected in the case with vanishing slope. Initially the
flow field and temperature propagate downstream (entrance) in the tunnel, after certain time the flow
moves upstream (exit) in the tunnel as can be seen from Figs. 8 and 9. This is due to buoyancy forces
acting in the tunnel with slope. Similarly to the previous example there is no significant differences
between the SP1 results and those obtained by the SP3 model. It is worthwhile mentioning that, regarding
to the value of optical scale s, all our computations deal with diffusive regimes where SP1 and SP3 models
exhibit asymptotically similar behavior.

Overall the temperature levels for radiating fluid (SP1 and SP3 models) are lower and more uniform than for
the non-radiating fluid (SP0 model) as radiation provides an additional mechanism to transfer the heat
generated inside the tunnel. As a consequence, the flow near the heated source breaks down and weakens
considerably. As expected, in the region near the fire source, a strong heat transport induced by the pressure
difference and therefore much lower temperatures are predicted.

Fig. 10 shows the time evolution of the temperature for two points located near the fire source at (540,
0.4 m) and (540, 0.8 m), respectively. As discussed in the previous example, the radiating SP1 and SP3

models generally predict higher velocities, especially those in the neighboring regions to the heat source.
When the radiative participation is more important, velocity increases in the fire source. Therefore, mass
transport is more important in the center of the tunnel. Thus, this center participates more in transfers, as
shown from the results presented in Fig. 9. Furthermore, the appearance of radiation varies the temper-
ature distribution in the tunnel, so that the temperature and the flow field in the tunnel are altered. For
example, in the point located at (540, 0.4 m), the maximum value of the temperature obtained by SP3

approximation is 2.1% higher than SP0 results at time t = 4 min. At time t = 16 min, this percentage
changes to 3.7%.

As a final remark we want to comment on the computational work for the presented approximations. The
number of iterations and CPU times required by SP0 approximation solutions were but slightly lower than the
respective SP1 solutions. The SP3 approximation, which is comparable to the discrete ordinates method in
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Fig. 10. Time evolution of the temperature for points located at (540, 0.4 m) (left column) and at (540, 0.8 m) (right column) in the tunnel
with 3% slope.
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accuracy [18], requires simultaneous solution of two second-order elliptic differential equations for radiation
calculations compared to one elliptic equation for the SP1 approximation.

5. Conclusions

In this paper, we have presented a comprehensive methodology for realistically predicting thermal flows at
low Mach number. The flow equations are derived from a low Mach asymptotic in the compressible Navier–
Stokes problem. The radiation is approximated by the SPN equations also derived by an asymptotic expansion
in the radiative transfer problem. The combined models have the potential to eliminate many difficulties that
one faces when attempting to solve the radiation hydrodynamic equations. For example, the low Mach
asymptotic removes the acoustic waves from the compressible flow without eliminating density variation.
Whereas, the SPN approximations for radiative transfer result in a set of equations independent of directional
coordinates and easy to solve. To solve the proposed models numerically we have implemented a modified
MAC method that allows incorporation of radiation source terms. Results indicate that the models are effi-
cient in generating accurate solutions and prove to be strong candidates for the integration into comprehensive
software packages.

Verification of the models has been carried out using two simplified fire events in vehicular tunnels. In the
first example, the tunnel is without slope which ensures that no pressure differences take place in the tunnel.
The second example assumes a tunnel with a slope of 3% which allow buoyancy forces to act in the tunnel. In
both examples the heat source is centered in the tunnel and has a strength of 10 MW corresponding to a burn-
ing car. It has been shown that for low temperatures, fluid radiation does not strongly affect the convective
heat transfer. However, if the radiative term is much higher than the convective term, this conclusion may
not hold. A large heat flux gradient can change the temperature gradient, which will affect convective heat
transfer. Furthermore, in both examples the corresponding flow fields are affected by the presence of radiation.
For instance, velocities are intensified in regions near the fire source.

Although the new models were successfully implemented in a class of fire events in tunnels, before recom-
mending a final version for widespread industrial two issues need to be considered. First, real Reynolds num-
bers and chemical reactions in the fire event which have the advantage of predicting turbulence effects. Second,
revisiting the gray assumption by consider the optical properties of mixed gases in the tunnel. These and fur-
ther issues are subject of future investigations.
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